A Pandas DataFrame is a 2D labeled data structure with columns of potentially different types.
There are a variety of different methods and syntaxes that can be used to create a pd.DataFrame.
Firstly, make sure you import the pandas module:
import pandas as pd
Method 1: Creating DataFrame from list of lists
# initialize list of lists
data = [['bob', 20], ['jane', 30], ['joe', 40]]
# Create the pandas DataFrame
df = pd.DataFrame(data, columns = ['Name', 'Age'])
df
Output:

Method #2: Creating DataFrame from dictionary of lists
In this method, you define a dictionary which has the column name as the key which corresponds to an array of row values.
# initialize dictionary of lists
data = {'Name': ['Bob', 'Joe', 'Jane', 'Jack'],
'Age': [30, 30, 21, 40]}
# Create DataFrame
df = pd.DataFrame(data)
df
Output:

You can use custom index values for the DataFrame by adding a parameter to the pd.DataFrame
function. Set the optional index
parameter of the pd.DataFrame
function to an array of strings for the index values.
df = pd.DataFrame(data, index=['first',
'second',
'third',
'fourth'])
df
Output:

In the same way that we just defined the index values, you can also define the column names separately. Set the optional columns
parameter of the pd.DataFrame
function to an array of strings for the column values.
Notice that the row values are now defined as a list of lists rather than a dictionary of lists. This is because the column values are no longer being defined with them.
df = pd.DataFrame(
[[4,5,6],
[7,8,9],
[10,11,12]],
index = ['row_one','row_two','row_three'],
columns=["a","b","c"]
)
df
Output:

Method #3: Creating DataFrame using zip() function.
The zip
function returns an iterator of tuples where the corresponding items in each passed iterator is paired together. By calling the list
function on the object returned from the zip function, we convert the object to a list which can be passed into the pd.DataFrame
function.
name = ["Bob", "Sam", "Sally", "Sue"]
age = [19, 17, 51, 49]
data = list(zip(name, age))
df = pd.DataFrame(data,
columns = ['Name', 'Age'])
df
Output:
