In this tutorial, I will show you how to create a separate DataFrame for each value for a given column.
Use the pandas.DataFrame.groupby(column)
method to group the DataFrame by the values found in the column named column
.
grouped_df = df.groupby('Column')
This method returns a GroupBy
object. You can see this yourself by printing the new dataframe by running print grouped_df:
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7efe3ec55670>
With the GroupBy
object from the previous function, call the DataFrameGroupBy.get_group(group)
method on the new dataframe grouped_df
.
This method will return a Dataframe
of all the rows that have the value group
in the column named column
.
grouped_df.get_group('column_value')

Alternatively, you can call both methods in one line:
value_df = df.groupby('Column').get_group('column_value')